Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Toxicol Chem ; 37(9): 2361-2371, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29878480

RESUMEN

Freshwater organisms are increasingly exposed to combinations of stressors. However, because it is time-consuming and costly, research on the interaction of stressors, such as compound toxicity and global warming on vertebrates, is scarce. Studies on multigenerational effects of these combined stressors are almost nonexistent. In the present study, we tested the combined effects of 4 °C warming and cadmium (Cd) exposure on life-history traits, biomarkers, bioaccumulation, and multigenerational tolerance in the turquoise killifish, Nothobranchius furzeri. The extremely short life cycle of this vertebrate model allows for assessment of sublethal and multigenerational effects within 4 mo. The applied Cd concentrations had only limited effects on the measured endpoints, which suggests that N. furzeri is more resistant to Cd than fathead minnow and rainbow trout. In contrast, the temperature increase of 4 °C was stressful: it delayed female maturation and lowered adult mass and fecundity. Finally, indications of synergistic effects were found on peak fecundity and embryonic survival. Overall, these results indicate the importance of studying chronic and multigenerational effects of combined stressors. Environ Toxicol Chem 2018;37:2361-2371. © 2018 SETAC.


Asunto(s)
Cadmio/toxicidad , Exposición a Riesgos Ambientales/análisis , Fundulidae/metabolismo , Temperatura , Aclimatación/efectos de los fármacos , Animales , Tamaño Corporal/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Femenino , Fertilidad/efectos de los fármacos , Fundulidae/anatomía & histología , Fundulidae/crecimiento & desarrollo , Respuesta al Choque Térmico/efectos de los fármacos , Masculino , Metalotioneína/metabolismo , Análisis de Supervivencia , Factores de Tiempo
2.
Aquat Toxicol ; 170: 129-141, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26655657

RESUMEN

The main objective of this study was to understand the mode of interaction between waterborne copper (Cu) and high environmental ammonia (HEA) exposure on freshwater fish, and how they influence the toxicity of each other when present together. For this purpose, individual and combined effects of Cu and HEA were examined on selected physiological and ion-regulatory processes and changes at transcript level in the common carp (Cyprinus carpio). Juvenile carp were exposed to 2.6µM Cu (25% of the 96h LC50value) and to 0.65mM ammonia (25% of the 96h LC50value) singly and as a mixture for 12h, 24h, 48h, 84h and 180h. Responses such as ammonia (Jamm) and urea (Jurea) excretion rate, plasma ammonia and urea, plasma ions (Na(+), Cl(-) and K(+)), muscle water content (MWC) as well as branchial Na(+)/K(+)-ATPase (NKA) and H(+)-ATPase activity, and branchial mRNA expression of NKA, H(+)-ATPase, Na(+)/H(+) exchanger (NHE-3) and Rhesus (Rh) glycoproteins were investigated under experimental conditions. Results show that Jamm was inhibited during Cu exposure, while HEA exposed fish were able to increase excretion efficiently. In the combined exposure, Jamm remained at the control levels indicating that Cu and HEA abolished each other's effect. Expression of Rhcg (Rhcg-a and Rhcg-b) mRNA was upregulated during HEA, thereby facilitated ammonia efflux out of gills. On the contrary, Rhcg-a transcript level declined following Cu exposure which might account for Cu induced Jamm inhibition. Likewise, Rhcg-a was also down-regulated in Cu-HEA co-exposed fish whilst a temporary increment was noted for Rhch-b. Fish exposed to HEA displayed pronounced up-regulation in NKA expression and activity and stable plasma ion levels. In both the Cu exposure alone and combined Cu-HEA exposure, ion-osmo homeostasis was adversely affected, exemplified by the significant reduction in plasma [Na(+)] and [Cl(-)], and elevated plasma [K(+)], along with an elevation in MWC. These changes were accompanied by a decline in NKA activity. Gill H(+)-ATPase mRNA levels and activities were not affected by either Cu or HEA or both. Likewise, NHE-3 expression remained unaltered but tended to be numerically higher during HEA exposure. Overall, these data suggest that at equitoxic concentrations (25% of 96h LC50), the individual effect of Cu is more harmful while HEA induces quicker adaptive responses. Our findings also denote a competitive mode of interaction, exemplified by the inhibition of HEA -mediated adaptive responses in the presence of Cu.


Asunto(s)
Amoníaco/toxicidad , Carpas/metabolismo , Cobre/toxicidad , Branquias/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Amoníaco/sangre , Animales , Proteínas Sanguíneas/metabolismo , Carpas/crecimiento & desarrollo , Exposición a Riesgos Ambientales , Branquias/metabolismo , Iones/sangre , Iones/química , Músculo Esquelético/química , Músculo Esquelético/metabolismo , ARN Mensajero/metabolismo , Sodio/sangre , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Urea/sangre , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...